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ABSTRACT 

This paper attempts to explain the “whining” or “hissing” sound reported from tornadoes. 
pothesis is that the air masses involved in the tornado circulation execute some free vibrations. 
these vibrations may be in the audible range for a small vortex whose radius is of the order of 10 m. or less. 
formula is obtained which relates the frequency of the tone to the inner radius of the vortex. 
to experimental verification. 

The leading hy- 
It is found that 

A 
This formula is amenable 

1. DESCRIPTIVE INTRODUCTION 

Several observers have stated that a tornado is usually 
attended by the emission of sound. This sound may be 
of the nature of (‘noise”, or it may be of the nature of a 
“musical tone”, the terms “noise” and “musical tone” 
being used in their physical sense. Thus a noise is a 
sound produced by some irregular vibrations that have 
no well defined overall frequency. A musical tone, on 
the other hand, is a sound associated with well defined 
regular vibrations which have a more or less well defined 
frequency. According to these definitions the rumbling 
sound of a train, that of thunder, that of a cannon, or the 
roar of a lion are noises. The sound of a tuning fork, or 
of a siren, or that of a flying bee may be classified as 
musical sounds, or tones. 
Flora ([5], p. 3) states that 

Destruction starts when this cloud [Le. the pendent cloud 
of the tornado] dips to the ground with a terrific roar, often 
described as resembling the noise of a thousand railway trains 
crossing trestles, or the sound of a cannon prolonged for a 
few minutes. Observers have also mentioned a peculiar 
whining sound like the buzzing of a million bees, which is 
usually heard when the cloud is high in the air. It is com- 
monly drowned out by the roar when the cloud makes contact 
with the ground and destruction begins. 

Flora (p. 11) also relates the description given by an 
observer of the noise produced by the Omaha, Nebr. 
tornado of M b c h  23, 1913: 

The noise was like ten million bees, plus a roar that beggers 
description. 

Another observer, describing the noise he heard from 
the Dodge City, Kans. tornado of June 22,1928, is quoted 
by Flora (p. 13): 

At last the great shaggy end of the funnel hung directly over 
head. . . . There was a screaming, hissing sound coming 
directly from the end of the funnel. . . . Around the rim 
of the great vortex [about 50-100 f t .  diapeter] small tornadoes 
were constantly forming and breaking away. . . . It was 
these that made the hissing sound. 

An observer describing the sound emitted by a tornado 
that formed in Germany on June 17, 1931 is quoted 
as follows ( [5 ] ,  p. 181): 

The funnel-shaped cloud was gray-black in color and advanced 
rapidly, accompanied by a noise “like the howl of dozens of 
sirens.” 

Brooks [4] describes the sound of a tornado as follows: 
A tornado reaching the ground produces a roaring or buzzing 
sound which has been heard as long as one hour before it 
arrived. 

Then he makes the following noteworthy remark: 
As this noise still occurs when a whirl is aloft (though to a 
lesser extent), it is not due entirely to the destruction being 
caused by the wind, but is due also to vibrations created 
by frictional effects in the strong wind shear of the whirl. 
Such sounds are augmented by long rolls of thunder, which 
may overlap to  make a nearly continuous background of 
rumble. 

It thus appears, from the quotations cited above and 
from other descriptions, that the sound usually attending 
a tornado is either one or a mixture of two distinct phe- 
nomena: a noise normally described as a roar or a 
rumble, and a musical tone normally described as a 
buzz or a whine. The noise may be attributed to various 
sources, such as the sound associated with destruction 
or collision of flying debris, or even the thunder that 
accompanies the twister. If it be established by obser- 
vation that the winds may reach sonic or supersonic 
speeds (Flora [5] p. 13), then the noise may also be 
attributed to the shock waves that must form in the 
supersonic regions of the circulation. The present 
writer [l]  has already suggested that supersonic flow 
may be possible with a proposed tornado model. Ander- 
son and Freier [3] have offered an explanation of the 
loud roar based on the possibility of the existence of 
circulating acoustic waves in a tornado vortex. Their 
explanation does not necessarily require a supersonic 
region. Loud noises may form as a result of the con- 
cent,ration of energy brought) about by converging sound 
waves. 
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It is the object of the present article to study the second 
class of sound-the musical sound. A complete and 
thorough discussion of this phenonenon is difficult because 
of lack of careful observations, not to mention the diffi- 
culties encountered in an exact mathematical analysis. 
Accurate measurements of the various elements that 
describe a tornado are still beyond present facilities. 
Thus, for instance, we do not have direct measurements 
of the radius of the twister, the exact wind distribution, 
the pressure and temperature variations, or the vertical 
cross-section of the vortex. The sound phenomena 
themselves have been mentioned only in a general descrip- 
tive way. Observers even differ about the very existence 
of this phenomenon. Nevertheless, it is felt that a 
preliminary theoretical study is desirable for two main 
reasons. First, it may be possible, by theoretical rea- 
soning, to  establish the possibility of these sounds and 
to give a general description of their nature and the 
conditions under which.they,may or may not exist. The 
second is to inquire into the possibility of using these 
sounds when they exist as an additional tool of obser- 
vation. It is always true that it is a relatively easy 
matter to obtain a rather quick and accurate estimate 
of the pitch of a musical tone. It is also true that, 
knowing the general nature of a sound source, one can 
tell quite a few things about that source from the pitch of 
the tone it emits. It may therefore be possible to tell 
some of the properties of the tornado just by making 
some measurements of the regular sound it creates. It 
is felt that the findings of such a theoretical treatment 
may serve to  call the attention of observers to  this tool 
which nature provides and someone may be able to record 
it and compare it with the results to be established. 

While the present writer differs with Brooks about the 
mechanism responsible for the creation of the sound, he 
agrees with him on the basic assumption that this sound 
is caused by the vibrations of the air masses as a whole. 
Every system subject to  equivalent restoring force and 
damping that is smaller than the critical value of aperi- 
odicity,. when displaced from a state of equilibrium, 
oscillates before attaining a new state of equilibrium or 
before returning to its old state. The air masses involved 
in the tornado circulation are no exception. Because 
these air masses are subject to  various disturbing forces 
oscillation may be expected. It will be shown in the 
present article that, under some appropriate conditions, 
a tornado may execute some short-wave vibrations. The 
frequency of the normal vibrations may lie in the audible 
range, thus making a tornado act as a huge sound source. 
Because of the regularity of these vibrations they belong 
to the musical class, despite the fact that this kind of 
music may not be a welcome one. 

9. WORKING MODEL 

According to present standing theories, a widely 
accepted model of a tornado is that of a Rankine com- 

bined vortex superposed on a sink in a compressible atmos- 
phere (Abdullah [l]). Such a model calls for radial as 
well as transversal flows. In an idealized circulation 
caused by such a combination the temperature may be 
expected to have a horizontal as well as a vertical gradient. 
Furthermore, the proper tornado circulation may vary 
with height, both in character and in size. The sink and 
the sense of vorticity may be expected to reverse them- 
selves at  greater heights. 

Because of the mathematical difficulties encountered in 
dealing with such a complicated model, some simplifying 
assumptions are made in the present treatment. The 
working model to be dealt with here is that of a pure 
Rankine vortex imbedded in an isothermal compressible 
atmosphere. Radial and vertical velocities are therefore 
neglected in the initial conditions. It is thus assumed that 
a tornado consists of two distinct regions. The interior 
region is a right cylindrical column of air rotating around 
its geometrical axis as a solid body. The exterior region 
consists of all the rest of the atmosphere which is affected 
by the circulation. The flow in this region follows the 
hyperbolic law. The vortex may be assumed stationary 
relative to the ground. Friction and the rotation of the 
earth are neglected. 

When this vortex is disturbed the air particles may 
move in all three dimensions of space. Waves may form 
and propagate in both the horizontal and vertical direc- 
tions. Because interest is centered around musical tones, 
the oscillations will be assumed to be harmonic in time. 
The amplitude of these oscillations may be small, so that 
shock waves and related phenomena are excluded. The 
motion of the disturbed vortex is that of a freely vibrating 
system. No forcing mechanism is postulated. 

3. MATHEMATICAL ANALYSIS 

Let a cylindrical polar system of coordinates be chosen 
as shown in figure 1. The origin of the coordinates is at  
the geometrical center of the base of the vortex column, 
and OX is an arbitrarily chosen fixed horizontal direction. 
The z-axis is vertical and points upward. In the undis- 
turbed case the motion is strictly horizontal and in the 
tangent,ial direction, so that it may be described by the 
following relations : 

(1 ) U,=k/r; a<r<m 

w=o, v=o 
where U is the tangential component of velocity, the 
indices i and e denote the interior and exterior regions, 
respectively, and W and V are the vertical and radial 
components of velocity. Capital letters refer to the 
undisturbed quantities. a is the radius of the interior 
region, and Q and k are constants of proportionality. 

If the assumption is made that there is no discontinuity 
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in the velocity vector at  the boundary between the two 
regions, the following relation between Q and k may be 
deduced : 

k=skC2 (2 ) 

In the working model it has been assumed that the 
atmosphere is isothermal. The additional assumption 
will be made here that all subsequent changes caused by 
the vibrations follow an isothermal law of expansion. In 
other words, the case under present consideration is that 
of an autobarotropic model. Although it is known that 
in acoustic vibrations the particles follow an adiabatic 
law of expansion, the isothermal assumption is adopted 
because it greatly facilitates the analysis while it does not 
affect the results appreciably, as will be shown later by 
induction. With this assumption, the ~ ~ f i ~ ~ i ~ ~  speed 
of sound, e, may be defined by the following equation: 

+ X  

FIGURE 1.-A schematic representation of the horizontal cross- 
section of the vortex under consideration. O X  is an arbitrarily 
fixed line from which the angular distance e is measured. a is 
the radius of the interior region. 

(3) 
CZ=&=IZT dP 

where the letters have their usual meanings, and T is a 
constant. 

The height of the homogeneous atmosphere is defined 
by the following relation (see, for example, Haurwitz [SI): 

To and e the following values d l  be assumed 
for the unknown variables: 

u=u(r, z )  cos (at-@) 

-constant (4) v=v(r, z)  sin (at-@) H=-=-- RT c2 
9 9  

With the usual perturbation assumptions, and with the 
undisturbed quantities denoted by capital letters and the 
perturbation quantities by small let hers, the equations 
of motion for the undisturbed state, in polar coordinates, 
are found to be 

U2(T)- 1 bP, 
r PO br 

where po is the undisturbed density. 
continuity is satisfied identically for this case. 

for infinitesimal vibrations are the following: 

The equation of 

The perturbation equations of motion and continuity 

b U d  %) w=-c2 - 
b Z  

where p=- * P  
P 

1 and e==- H 

w=w(r, z )  sin (at-pe) 

$=$(r, Z )  COS 

and 

Upon insertion of these values in (6 )  the following 
equations result: 

(8) 
r 

-(cy-?) $-e~+($+l )  ; + ~ + ~ + r = O  v bw bv pu (dl 

It may be remarked that the functional dependence 
of the unknown variables upon r and x has not been 
written down explicitly, since no confusion is expected 
to  arise. 

From (a) and (b) of (8) the following values are obtained 
for u and v:  

where 

209-936 0 - 66 - 3 
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and from (c) of (8) the following value of w is found: w=O, atz=O I 
From (10) and (13) this condition becomes 

dZ _- dz-O, at z=O 

Upon substitution from (9) and (10) in ( 8 4  the follow- This condition serves to  determine C' in terms of C, 
as a result of which equation (16) takes the following ing equation is found for $: 

I (18) 

w may vanish at  some other height, h, the admissible 
If the additional plausible restriction is imposed that 

, 
values of 1 are found to be 

I 

D 

S(r)=f$+l) -& ( a - y - D  1 [B 1 dD 
(a+Y 

1 1/2 

x,=($fm) 7 s=o, 1 , 2 , .  . . (19) 

I 

(12) If h is identified with H,  the height of the homogeneous 
atmosphere, this reaction takes the following form: 

The lowest value of X, is found t o  be X0=l/2H, and the 
higher overtones may be found by giving s the proper 
values. 

, Let the following value be assumed for 6: 
$(r ,  z)=Z(z)R(r) (13) 

Substituting in ( l l ) ,  with the usual procedure of separa- 
tion, results in the following two equations: . 

d2Z dZ -- e -+x2z=o dz2 dz 

where 1 is the separation constant. 

to be solved for the two distinct regions. 
Equations (14) and (15) are the two basic equations 

4. SOLUTION OF THE EQUATION FOR THE VERTICAL 
COMPONENT 

Equation (14) has the following solution : 

where C' and C are the two constants of integration. 
The boundary condition .to be satisfied at  the horizontal 

ground is 

5. SOLUTION OF THE EQUATION FOR THE 
HORIZONTAL COMPONENT 

Because U(r) appears in the coeEcients of equation (15) 
its solution differs between the interior and the exterior 
regions. However, before the attempt is made to 
obtain these solutions an approximation will be made 
which greatly facilitates the analytical procedure. 

The maximum value that the ratio U/c may attain is 
its value at  the boundary between the two regions. 
Indirect observations indicate that in most cases this quan- 
tity is of the order of 1/2 or less. The quantity ( U/C)~ may 
therefore be neglected in comparison with unity without 
introducing serious error. It is felt that the simplifications 
introduced by making this approximation may justify 
its adoption despite the limitations it imposes upon the 
model. 

6. SOLUTION APPROXIMATE TO THE INTERIOR 
REGION, O 5 r 5 a  

In the interior region relation (1) gives for U the value 
or. Inserting this in (12) and (Sc), neglecting ( U / C ) ~  in 
comparison with unity, and substituting in (15), yield the 
following equation : 
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where 

Equation (21) is the typical Bessel equation. The 
nature of the cylindrical functions that satisfy this equa- 
tion depends upon the nature of m, whether it is real or 
imaginary. In anticipation of the discussion to be given 
later, m will be taken to be a real number. Equation (21) 
has, therefore, the following solution (see, for example, 
Abramowitz and Stegun [2]): 

R= GJB(mr) + G’ YB(mr) , 0 5 r _< a (23) 

where G and G’ are the two constants of integration, and 
Jp(rnr) and Y,(mr) are, respectively, the Bessel functions 
of first and second kind. 

Because Y,(mr) goes t o  infinity at  r=O, and since the 
motion must be bounded at  this point, G’ must be zero. 
The appropriate solution is, therefore, the following: 

R=GJ,(mr), O_<r_<a (24) 

Upon combining this value with (18)) inserting in (13), 
then making use of (9)) (10) and (7)) we find the solutions 
relevant to the interior region to be the following, the 
constant G being absorbed in C: 

e 
-2 $ ‘-pi --fi=Ce2 Ja(mr) 

-($-lY” cos (X2-;)l”z] cos (at-bO) (d) 

7. SOLUTION APPROPRIATE TO THE EXTERIOR 
REGION, aSrS w 

In the exterior region relations (I) give for U the value 
U,=k/r. When this value is inserted in the relevant 

equations, (15) takes the following form: 

This equation may be simplified by considering the 
orders of magnitude of the various quantities and neglect- 
ing terms of smaller magnitudes. 

Thus i t  may be noticed that powers of r appear in the 
denominators of some terms which will be shown to be 
much smaller than the rest. The minimum value that 
r can attain in the exterior region is its value at  the 
boundary between the two regions. A representative 
magnitude of this quantity is lo4 cm. However, it will 
be shown that even for the still smaller value of lo3 cm. 
the approximations to be made are justifiable. 

Take the maximum value of U to be of the order of 
io4 cm. set.-' It follows that k is of the order of 10’ 
c.g.s. units. Because we are 
looking for sound waves a may be of the order of lo3 set.-' 
This makes the frequency of the order lo2 set.-' 

The two terms in the coefficient of dRldr have the 
orders of magnitude 

p may be of the order of 10. 

T - ~ + O ( ~ O - ~ )  and 4Pk fkl-’O(10-4) or less 
r3 a - 7  

Hence the second term may be neglected. Similarly, if 
in the coefficient of R quantities of order less than are 
neglected, equation (26) may be put in t8he following 
approximate form 

where 

and 

d2R 1 &R P2 -+- dr2 r -+(6’--p) dr R=Q (27) 

Equation (27) is again in the typical form of Bessel 
equation. The quantity p is always a real number. 6 
is also real for small values of h, which is usually the case, 
as may easily be inferred. Hence the solution relevant 
to  these conditions is the following: 

R=A1J,(6r) +A2Y,,(6r) (29) 

where A, and A2 are the two constants of integration. 
Upon making use of (29)) following the same procedure 

as in the previous case, and letting the constant C be 
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absorbed in A, and Az, we find the following solutions 
for the various variables: 

2 1/2 

U, = GZ&:' [A1J,(8r) +A2Y,(8r)] [sin @-:) z 
r ( p l - f )  

sin X -- z sin (at-j30) (c) ( : ) IJ2 

-r$-1)Li2cos ~ - ~ ~ ' 2 ~ ] X c o s  (at-@) (d) 

I 
8. BOUNDARY CONDITIONS AND FREQUENCY 

EQUATION 

It remains to fit the boundary conditions and obtain a 
frequency equation for these vibrations. In order to 
write down a simplified version for the boundary con- 
ditions pertinent to the motion under consideration, it 
will be assumed that no slipping be permissible at  the 
boundary surface between the two regions. The same 
condition has been used by Kelvin [7] in discussing the 
incompressible case of the present model. 

The boundary conditions may therefore be written as 
follows : 

vi=v, 
Ur=U, [i;} at r=a (31) 
wi=we (4 

The first condition also follows from continuity con- 
From the third of these conditions and (10) 

r=a (314 

siderations. 
it follows that 

From these conditions and equations (25) and (30) the 
following relations are found among the constants A,, 
A2, and C: 

(324 
and 

where 

and ) a t r = a  

Relations (32) make it possible to eliminate two of the 
integration constants, leaving only one arbitrary constant 
which is a measure of the amplitude of vibrations. 

From the foregoing relations and equations (25a) and 
(30a), condition (31b) gives the following equation: 

This is the frequency equation for the vibrations under 
study. 

9. SPECIAL CASE OF RADIALLY SYMMETRICAL 
VIBRATIONS 

The solutions presented in the foregoing analysis de- 
scribe the general motion subject to  the postulated assump- 
tions. However, the main object of the present article 
is t o  study the capability of a tornado to execute high- 
frequency free vibrations, and to  discuss the conditions 
under which these vibrations lie in the audible range. It 
is therefore appropriate to limit the discussions to  the 
lowest possible frequencies. 

The lowest order of vibrations in the tangential direc- 
tion is that described by setting p=O. This makes the 
motion radially symmetrical and independent of 8. The 
particles composing the same cylindrical ring vibrate in 
phase with each other. 

The solutions for this specially important limiting case 
may readily be obtained from tpe relevant equations by 
giving j3 the value 0. The frequency equation (33) 
simplifies to the following: 

J1 (ma) = 0 (34) 

From a consideration of the orders of magnitude it may 
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easily be seen that mu is a large number. Equation (34) 
may therefore be written in the following asymptotic 
form: 

Jl(ma) - cos (ma--:)=O (35) 
ma+= nma 

Hence 

m = z  (4j+5); j=o, 1, 2 .  . . 
4a 

From (22), with B=O, the value of m is found t o  be 

(37) 

Upon combining this with (36) and solving for a, then 
noting that the pitch v has the value (rJ2ir, we obtain the 
following value for yo, 

where the subscripts 0, j are written down to  indicate that 
the frequency is that corresponding to p=O and the 
chosen value of j. 

In order to obtain an idea about the audibility of these 
vibrations it may be mentioned that experiments have 
shown that the normal human ear can detect a sound 
whose frequency is as low as 20 set.-' (see, for example, 
Pollack [SI). To evaluate the expression given in (38) 
let us start by assuming that the temperature of the 
isothermal atmosphere is 273' K. The values of H 
and c corresponding to this temperature are, approxi- 
mately, 8.105 cm. and 2.8X104 cm. set.-', respectively. 
If the height, h, appearing in equation (19) be identified 
with the height of the homogeneous atmosphere, H ,  the 
value of h corresponding to  s=l is 0.394X10-5 cm.-' 

Let the maximum undisturbed velocity be lo4 cm. sec.- 
The quantity 0 then has the value 104u-'. When these 
values are substituted in equation (38) it is immediately 
seen that A: and 16Q2;22hf/c2 are at  least two orders of 
magnitude smaller than the rest of the terms. If these 
quantities are neglected, equation (38) reduces t o  the 
following : 

4u2 (4j+5)27r2 1'2 1 vO.f=F& [-+ c2 16 (39) 

An immediate result of this equation is that the pitch 
is inversely proportional to the radius of the interior 
region, a result which agrees with physical speculation. 

The frequency of the fundamental mode of vibrations, 
v , , , ~ ,  may be obtained from (39) by giving j the value 0. 
Hence 

(40) 

It follows from this equation that the largest value of a 
that may give rise to  audible fundamental tone is 

Upon making V ~ , ~ = ~ O ,  and substituting for U and c 
their assumed values, we find that ~ , # ~ = 9 . 2 5  m. It 
would seem therefore that the fundamental tone is only 
audible in small vortices whose interior region is of an 
order of magnitude less than 10 m. It is known that the 
fundamental contains the maximum energy, and hence it 
is the mode which determines the overruling pitch. How- 
ever, if the frequency of the fundamental lies in the silent 
domain, higher overtones may still be audible. Thus the 
f is t  overtone corresponding t o  j=  1 is represented by the 
following equation: 

Substituting the assumed values yields amax,l=15.8 m. 
Thus vortices with larger radii may be heard. 

Equation (39) could be simplified further by neglecting 
the first term under the radical since it is normally smaller 
than the second. Equation (39) then takes the following 
approximate form: 

(43) 

The Newtonian speed of sound, c, appeared in this 
formula because, for the sake of simplicity, an isothermal 
law of expansion has been assumed. It is more correct, 
however, to assume an adiabatic law, in which case it may 
be expected to come out with the Laplacian speed which 
is more in agreement with measurements. If this speed 
is taken as 331 m. set.-', (43) becomes 

4 1.5 (4j+ 5) 
a vo,j= 

where a is measured in meters. 
The fundamental frequency is given by 

207 
vj=- a 

(44) 

(45) 

which is a very simple formula that may be used to deter- 
mine one of the two unknowns, v or a, when the other is 
known. 

As an example, consider the case of the Dodge City 
tornado of June 22, 1928, which was mentioned in the 
introduction. The observer has estimated the diameter 
of the great vortex to be between 50 and 100 ft. Because 
of the obscurities to visibility that usually surround the 
interior region, it seems reasonable t o  take the lower value 
as the more likely one. This makes the radius about 
7.5 m. The frequency of the fundamental tone corre- 
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sponding to this radius is, from (45), 28 set.-' which is in 

from (44), 50 set.-' which is well in the audible range. 

10. CONCLUSIONS AND FURTHER REMARKS 

I the audible range. The frequency of the first overtone is, 

(1) On the basis of the analysis cited above it may be 
concluded that tornadoes are capable of executing free 
vibrations with high frequencies. These frequencies may 

enough to satisfy the required conditions. This result 
may explain the whining or buzzing sound described by 
some observers. The lower harmonics of vibrations 
executed by larger vortices lie in the inaudible range. 
Hence only noise is likely to be heard from large vortices. 
Observers who have reported hearing the musical tone 
have also described the twisters from which the sound 
originated as being small in diameter. This agrees 
qualitatively with the findings of the present article. 

the present findings it may be mentioned that the musical 
sound has mostly been reported from tornadoes that did 
not touch the ground. It is obviously true that any 
musical sound that may be emitted by tornadoes touching 
the ground may be drowned out by the louder noise 
associated with it. But it may also be remarked that 
tornadoes that do not touch the ground usually have 
small radii. 

(3) The main result obtained by the theoretical analysis 
is that expressed by equation (39) which could be put in 
the simplified approximate form given in (44). This 
formula relates the frequency of the vibrations to  the 
radius of the tornado. Because of the violence of the 
storm it is rather beyond present observational possibilities 
to measure the inner radius. However, it is much easier 
to measure the frequency. This could best be done 
by recording the vibrations and performing a harmonic 
analysis after filtering out the noise. This method may 
be applicable even if the frequencies lie in the infrasonic 
region. When the frequency is known, the inner radius 
may be computed. This is a tool which nature provides 
and which has not, so far, been used. 
(4) Finally, the following remark may be made about 

the mathematical analysis. In the analysis the quantities 
m and p were taken to be real numbers. The necessary 
condition for this to be true is approximately the 
following : 

I fall in the audible range if the radius of the vortex is small 

I (2) As a further evidence which is in agreement with 
I 

This condition leads to the following inequality: 

L>L 

where L ,  is a wavelength in the vertical direction and 
L, in the horizontal direction. This condition may be 
expected to hold in an atmosphere whose density decreases 
exponentially with height, while remaining constant in 
the horizontal direction. However, the possibility that 
this condition may be violated, and shorter vertical wave- 
lengths may exist, cannot be ruled out completely. In 
that case the basic equations admit of solutions in terms 
of the modified Bessel functions of purely imaginary 
arguments, Im(mr> and K@(pr),  A discussion of such 
solutions has not been attempted here because of the 
arbitrariness of the then resulting parameters, and because 
it was felt that the present assumptions may be more 
realis tic. 
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